Applied Sciences (Sep 2018)
Pneumatic Atomization: Beam-Steering Correction in Laser Diffraction Measurements of Spray Droplet Size Distributions
Abstract
Laser diffraction is among the most widely used methods for spray droplet size measurements. However, the so-called beam-steering effect must be considered when pneumatic atomizers are used for droplet generation. The beam-steering effect is a systematic measurement error, leading to the detection of apparent large spray droplets due to gradients in the refractive index of the gas phase. The established correction method is based on the reduction of the laser diffraction system’s measurement range by deactivation of detectors, relevant for the detection of large droplets. As this method is only applicable when size ranges of real and apparent droplet sizes are clearly different, an alternative method for beam-steering correction is introduced in the presented study. It is based on a multimodal log-normal fit of measured spray droplet sizes. The modality representing the largest droplets is correlated to the beam-steering effect and therefore excluded from the measured size distribution. The new method was successfully applied to previously published droplet size distribution measurements of an internal mixing Air-Core-Liquid-Ring (ACLR) atomizer. In measurements where the method of detector deactivation is applicable, excellent accordance of droplet size distributions, gained by both correction methods, was found. In measurements with overlapping real and apparent parts of the distribution, the new correction method led to a significant reduction of overestimated large droplets. As a consequence, we conclude that the new method presented here for beam-steering correction should be applied in laser diffraction measurements of spray droplet sizes, generated by pneumatic atomizers.
Keywords