Mìkrosistemi, Elektronìka ta Akustika (Mar 2024)

Визначення ознак апное сну за допомогою методів машинного навчання в поєднанні зі зменшенням розмірності ознак варіабельності серцевого ритму

  • Amina Serhiivna Samsonenko,
  • Anton Oleksandrovych Popov

DOI
https://doi.org/10.20535/2523-4455.mea.297387
Journal volume & issue
Vol. 29, no. 1

Abstract

Read online

Синдром обструктивного апное під час сну (СОАС) є хворобою, що виникає внаслідок повторюваних епізодів зупинки верхніх дихальних шляхів (апное) або їх стиснення (гіпопное), які виникають на рівні фарингею, з збереженою функцією дихальних м'язів. Останнім часом більше уваги приділяється дослідженням того, як ідентифікувати апное за аналізу серцевої діяльності на основі варіабельності серцевого ритму (ВРС). У цій роботі аналіз ВРС для виявлення ознак апное виконується за допомогою різних типів параметрів у часовому і частотному доменах. Застосовано кілька методів шкалювання та зменшення розмірності, таких як аналіз головних компонент, t-розподілене вкладення стохастичної близькості і рівномірну апроксимацію та проекцію різноманіття. Після цього було навчено низку класифікаторів: k-найближчих сусідів, логістичну регресію, машини опорних векторів, дерево рішень, випадковий ліс і градієнтне підсилення. З використанням даних від 70 пацієнтів з бази даних Apnea-ECG (платформа Physionet) досягнута точність 100% в усіх класифікаторах і методі зменшення розмірності на основі рівномірної апроксимації та проекції різноманіття. Особливістю запропонованого підходу є застосування машинного навчання до параметрів ВРС після зменшення їх розмірності, що може бути використано в реальних умовах для виявлення СОАС.

Keywords