Designs (Nov 2022)

Robot Coordination: Aeronautic Use Cases Handling Large Parts

  • Itzel De Jesús González Ojeda,
  • Pablo Bengoa,
  • Aitor Ibarguren,
  • Juan Carlos Antolín-Urbaneja,
  • Panagiotis Angelakis,
  • Christos Gkournelos,
  • Konstantinos Lotsaris,
  • Sotiris Makris,
  • Sandra Martínez De Lahidalga

DOI
https://doi.org/10.3390/designs6060116
Journal volume & issue
Vol. 6, no. 6
p. 116

Abstract

Read online

The coordination of two collaborative robots to handle and hold huge parts is the main topic of this research. This study shows how flexible systems may accommodate large-volume components while situating components with a displacement precision between robots of no more than 10 mm into the parts, with the assistance of a single operator. The robots must be able to keep the parts in place while coordinating their movements to handle the parts and reducing external stressors. This paper suggests using collaborative robots to integrate flexible tools for adaptability to various elements in order to accomplish this goal without endangering the operators. The software architecture is described in full in this paper, including machine states to choose task executions, robot referencing in the workspace, remote monitoring via the digital twin, generation paths, and distributed control using a high-level controller (HLC).

Keywords