Materials Research (Feb 2018)
Effects of Multiple Extrusions on Structure-property Performance of Natural Fiber High-density Polyethylene Biocomposites
Abstract
Detailed analysis of the effects of multiple extrusions on physical, mechanical, micro-structural as well as dynamic mechanical thermal properties of natural fiber high-density polyethylene (HDPE) composites is reported. Composite materials containing HDPE, wood flour, and Maleic Anhydride polyethylene (MAPE) were manufactured and subjected to a recycling process consisting of up to four times grinding and reprocessing under industrial conditions. A wide range of analytical methods including bending tests, modulus of elasticity, impact strength, Scanning electron microscopy (SEM), fiber length measurement, water absorption tests, and dynamic mechanical thermal analysis (DMTA) were employed to understand the effects of recycling on natural fiber-HDPE composites. The results revealed that the recycled composites had lower bending strength and modulus of elasticity values, as compared to the reference counterparts. Also, the once recycled composites showed higher impact strength. Results, as well, indicated that generally the recycled composites had lower water absorption values as compared to the reference ones. The results obtained from DMTA exhibited a decrease in storage modulus and an increase in mechanical loss factor (tan δ) for all composites subjected to recycling. Alterations in phase transition temperatures and intensities were also monitored and the possible reasons were analyzed.
Keywords