Journal of High Energy Physics (Jan 2024)

Operator dynamics in Lindbladian SYK: a Krylov complexity perspective

  • Budhaditya Bhattacharjee,
  • Pratik Nandy,
  • Tanay Pathak

DOI
https://doi.org/10.1007/JHEP01(2024)094
Journal volume & issue
Vol. 2024, no. 1
pp. 1 – 42

Abstract

Read online

Abstract We use Krylov complexity to study operator growth in the q-body dissipative Sachdev-Ye-Kitaev (SYK) model, where the dissipation is modeled by linear and random p-body Lindblad operators. In the large q limit, we analytically establish the linear growth of two sets of coefficients for any generic jump operators. We numerically verify this by implementing the bi-Lanczos algorithm, which transforms the Lindbladian into a pure tridiagonal form. We find that the Krylov complexity saturates inversely with the dissipation strength, while the dissipative timescale grows logarithmically. This is akin to the behavior of other 𝔮-complexity measures, namely out-of-time-order correlator (OTOC) and operator size, which we also demonstrate. We connect these observations to continuous quantum measurement processes. We further investigate the pole structure of a generic auto-correlation and the high-frequency behavior of the spectral function in the presence of dissipation, thereby revealing a general principle for operator growth in dissipative quantum chaotic systems.

Keywords