Metabolites (Nov 2022)

Interleukin-8 (IL-8) as a Potential Mediator of an Association between Trimethylamine N-Oxide (TMAO) and Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) among African Americans at Risk of Cardiovascular Disease

  • Alyssa M. Baginski,
  • Nicole Farmer,
  • Yvonne Baumer,
  • Gwenyth R. Wallen,
  • Tiffany M. Powell-Wiley

DOI
https://doi.org/10.3390/metabo12121196
Journal volume & issue
Vol. 12, no. 12
p. 1196

Abstract

Read online

Trimethylamine N-oxide (TMAO)—a microbial metabolite derived from the hepatic–gut axis—is linked to inflammation, hyperlipidemia, and cardiovascular disease (CVD). Proprotein convertase subtilisin/kexin type 9 (PCSK9), which is largely hepatically expressed, blocks low-density lipoprotein (LDL) receptor recycling, also leading to hyperlipidemia. The primary objective of this study was to investigate a previously hypothesized potential relationship between TMAO and PCSK9 in order to explore novel mechanisms linking TMAO and CVD risk. African American adults at risk of CVD living in the Washington DC area were recruited to participate in a cross-sectional community-based study (n = 60, 93% female, BMI = 33). Fasting levels of inflammatory cytokines (i.e., interleukin (IL)-1 beta, tumor necrosis factor-alpha, and interleukin-8), TMAO, and PCSK9 were measured using Luminex and ELISA, respectively. Univariate and multivariate linear regression analyses and structural equation mediation analyses were conducted using STATA. All models were adjusted for body mass index (BMI) and atherosclerotic CVD risk score (ASCVD). A significant association between TMAO and PCSK9 was identified (β = 0.31, p = 0.02). Both TMAO and PCSK9 were significantly associated with IL-8 (TMAO: β = 0.45, p = 0.00; PCSK9: β = 0.23, p = 0.05) in adjusted models. Mediation analysis indicated that 34.77% of the relationship between TMAO and PCSK9 was explained by IL-8. Our findings indicate a potential PCSK9-involved pathway for TMAO and CVD risk, with potential mediation by IL-8.

Keywords