Физика волновых процессов и радиотехнические системы (Nov 2021)
Asymmetrical dipole antenna based on a phase-correcting dielectric lens
Abstract
Problem. Modern mobile robotic systems are increasingly used in various fields of human activity. More and more stringent requirements are imposed on them to ensure high throughput, broadband and reliability of data transmission and control channels at the maximum distance from the control center. And what I would like to note separately is the requirement to reduce the cost of such complexes as much as possible. Therefore, the development of technologically advanced, economically feasible antenna systems that provide an increase in the energy potential of the radio channel in the interval of the robotic complex - control point is one of the ways to solve this problem. Formulation of the problem. It is required to develop a mechanically strong, technological antenna, built on the basis of lens structures of various configurations, made of modern dielectric materials, characterized by reduced weight and size characteristics and cost price, which will increase the level of radiated electromagnetic energy in a wide frequency band. Purpose of the article. Present the developed model of an asymmetric dipole antenna and the results of a numerical experiment. Result. The antenna design is made on a metallized round substrate and is a polystyrene cylinder with a funnel-shaped hole, inside which there is an asymmetrical conical vibrator arm. The results of calculations showed that in the frequency band, which is used to organize direct broadband radio communication channels with robotic complexes, the gain varies within 5.5-9 dB, which is superior in this parameter to the commonly used whip antennas. The calculated standing wave ratio confirms the performance of the developed antenna model in a wide frequency band. The impedance response and the Smith-Smith diagram showed a preliminary calculated spread of the input impedance of the antenna from 30 to 95 ohms. Practical significance. The proposed antenna model ensures manufacturability, mechanical strength, and low cost. The full-azimuth radiation mode and increased gain make it possible to predict the possibility of using this antenna as part of the equipment for the data transmission channel and control of robotic complexes such as unmanned aerial vehicles.
Keywords