Scientific Reports (Jul 2023)
LungElast—an open-source, flexible, low-cost, microprocessor-controlled mouse lung elastometer
Abstract
Abstract The study of mouse lung mechanics provides essential insights into the physiological mechanisms of pulmonary disease. Consequently, investigators assemble custom systems comprising infusion-withdrawal syringe pumps and analog pressure sensors to investigate the lung function of these animals. But these systems are expensive and require ongoing regulation, making them challenging to use. Here I introduce LungElast, an open-source, inexpensive, and self-contained instrument that can experimentally determine lung elasticity and volumes even in immature mice. It is assembled using custom 3D printed parts and readily available or easily constructed components. In this device, a microprocessor-controlled stepper motor automatically regulates lung volume by precisely driving a syringe piston whose position is determined using time-of-flight LIDAR technology. The airway pressures associated with the lung volumes are determined using compact sensor-on-chip technology, retrieved in a digital format, and stored by the microcontroller. The instrument software is modular, which eases device testing, calibration, and use. Data are also provided here that specify the accuracy and precision of the elastometer’s sensors and volume delivery and demonstrate its use with lung models and mouse pups. This instrument has excellent potential for research and educational work.