Catalysts (Oct 2020)

CHA-Type Zeolite Prepared by Interzeolite Conversion Method Using FAU and LTL-Type Zeolite: Effect of the Raw Materials on the Crystallization Mechanism, and Physicochemical and Catalytic Properties

  • Toshiki Nishitoba,
  • Takuya Nozaki,
  • Sungsik Park,
  • Yong Wang,
  • Junko N. Kondo,
  • Hermann Gies,
  • Toshiyuki Yokoi

DOI
https://doi.org/10.3390/catal10101204
Journal volume & issue
Vol. 10, no. 10
p. 1204

Abstract

Read online

The effect of the raw materials including parent zeolite as aluminosilicate sources and organic structure-directing agents (OSDAs) on the crystallization mechanism, and physicochemical and catalytic properties of the CHA-type aluminosilicate zeolite was investigated. For this purpose, the FAU-type and the LTL-type zeolites were used as raw material, and trymethyladamantyl ammonium hydroxide and tetraethyl ammonium hydroxide were used as OSDAs. We firstly found that the CHA-type aluminosilicate zeolite was crystallized from the combination of the LTL-type zeolite and tetraethyl ammonium hydroxide as raw materials. The crystallization behaviors were also monitored in detail. The crystallization was delayed by using the LTL-type zeolite as the starting material regardless of the type of OSDA because of the low solubility of the LTL-type zeolite compared to the FAU-type zeolite. We have found that the Al distribution in the CHA framework was dependent on the raw materials. Thus, the prepared CHA-type aluminosilicate zeolite from the LTL-type zeolite exhibited a high thermal stability and catalytic performance in the methanol to olefins reaction.

Keywords