Sensors (Dec 2018)

Measurement Structures of Image Compressive Sensing for Green Internet of Things (IoT)

  • Ran Li,
  • Xiaomeng Duan,
  • Yanling Li

DOI
https://doi.org/10.3390/s19010102
Journal volume & issue
Vol. 19, no. 1
p. 102

Abstract

Read online

Image compressive sensing (CS) is a potential imaging scheme for green internet of things (IoT). To further make CS-based sensor adaptable to low bandwidth and low power, this paper focuses on finding a good measurement structure, i.e., the organization and storage format of CS measurements. Three potential measurement structures are proposed in this paper, respectively raster structure (RA), patch structure, and layer structure (LA). RA stores CS measurements of each column in an image, and PA packets CS measurements of overlapping patches forming an image. LA enables the measuring of small blocks and recovery of large blocks. All of the three structures avoid high computation complexity and huge memory in the process of measuring and recovery, and efficiently suppress the annoying blocking artifacts which often occur in traditional block structures. Experimental results show that RA, PA, and LA can efficiently reduce blocking artifacts, and produce comforting visual qualities. LA, especially, presents both good time-distortion and rate-distortion performance. By this paper, it is proved that LA is a suitable measurement structure for green IoT.

Keywords