口腔疾病防治 (Nov 2021)
Preparation and antibacterial properties of a copper-niobium coating on a titanium surface by a microarc oxidation-microwave hydrothermal method
Abstract
Objective To prepare a copper-nobium antibacterial coating on a titanium surface by a microarc oxidation-microwave hydrothermal two-step method and to study its surface structure and antibacterial properties. Methods Using titanium coated with a microarc oxidation coating (MAO group) as the substrate, copper and niobium were introduced by a microwave hydrothermal method in low (MHL-Cu group), medium (MHM-Cu group) and high (MHH-Cu group) copper chloride solutions and niobium oxalate (MH-Nb group) solutions, respectively. The component with the highest copper content was determined by energy spectrum analysis, and the copper-niobium composite coating (MH-Cu/Nb group) was prepared by microwave hydrothermal mixing with niobium oxalate. The microstructure, element distribution and phase composition of the specimens were characterized by scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction, and the bacteriostatic effect of the coating onEscherichia coliand Staphylococcus aureus was determined by the film method. Results Energy dispersive spectrometry showed that Cu was introduced onto the surface of the MHL-Cu, MHM-Cu, and MHH-Cu groups, and the atomic ratios of copper in each group were (0.68 ± 0.04)%,(1.17 ± 0.06)%, and (1.64 ± 0.03)%. The difference between groups was statistically significant (P 0.05).Conclusion The rough, porous coating containing copper and niobium prepared by the microarc oxidation-microwave hydrothermal two-step method can effectively inhibit the growth ofEscherichia coli and Staphylococcus aureus.
Keywords