Applied Sciences (Dec 2018)
Recognition of Acoustic Signals of Commutator Motors
Abstract
Most faults can stop a motor, and time is lost in fixing the damaged motor. This is a reason why it is essential to develop fault-detection methods. This paper describes the acoustic-based fault detection of two commutator motors: the commutator motor of an electric impact drill and the commutator motor of a blender. Acoustic signals were recorded by a smartphone. Five states of the electric impact drill and three states of the blender were analysed: for the electric impact drill, these states were healthy, damaged gear train, faulty fan with five broken rotor blades, faulty fan with 10 broken rotor blades, and shifted brush (motor off); for the blender, these states were healthy, faulty fan with two broken rotor blades, and faulty fan with five broken rotor blades. A feature extraction method, MSAF-RATIO-27-MULTIEXPANDED-4-GROUPS (Method of Selection of Amplitudes of Frequency Ratio of 27% Multiexpanded 4 Groups), was developed and used for the computation of feature vectors. The nearest mean (NM) and support vector machine (SVM) classifiers were used for data classification. Analysis of the recognition of acoustic signals was carried out. The analysed value of TEEID (the total efficiency of recognition of the electric impact drill) was equal to 96% for the NM classifier and 88.8% for SVM. The analysed value of TEB (the total efficiency of recognition of the blender) was equal to 100% for the NM classifier and 94.11% for SVM.
Keywords