Renal Failure (Dec 2023)

Ischemic postconditioning protects against acute kidney injury after limb ischemia reperfusion by regulating HMGB1 release and autophagy

  • Zhongdi Liu,
  • Yifan Chen,
  • Zhe Du,
  • Fengxue Zhu,
  • Wei Huang

DOI
https://doi.org/10.1080/0886022X.2023.2189482
Journal volume & issue
Vol. 45, no. 1

Abstract

Read online

AbstractIschemic postconditioning (I-PostC) has a protective effect against acute kidney injury (AKI) induced by limb ischemia–reperfusion (LIR); however, the exact mechanism remains to be elucidated. Our study aims to investigate the potential involvement of high-mobility group box 1 protein (HMGB1) and autophagy in renoprotection generated by I-PostC. A rat model of LIR-induced AKI was established and rats were randomly assigned to five groups: (i) sham-operated control, (ii) I/R, (iii) I/R + I-PostC, (iv) I/R + I-PostC + rapamycin (autophagy activator), and (v) I/R + I-PostC + 3-methyladenine (autophagy inhibitor). Morphological changes in the kidneys were assessed by histology, and ultrastructural changes in renal tubular epithelial cells and glomerular podocytes were observed by transmission electron microscopy. The levels of kidney function parameters, serum inflammatory factors, and autophagy markers were detected. The results showed that the levels of HMGB1, Beclin1, LC3-II/LC3-I, and inflammatory cytokines (TNF-α and IL-6) were significantly higher in the I/R group compared to the sham control in serum and in renal tissues. I-PostC significantly reduced the levels of HMGB1, Beclin1, LC3-II/LC3-I, and inflammatory cytokines in renal tissues and improved renal function. Renal histopathology and ultrastructural observations indicated that I-PostC alleviated renal tissue injury. In addition, rapamycin (autophagy activator) treatment increased the levels of inflammatory cytokine expression levels and decreased renal function, reversed the protective effect of I-PostC against LIR-induced AKI. In conclusion, I-PostC could play a protective role against AKI by regulating the release of HMGB1 and inhibiting autophagy activation.

Keywords