A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors
Isaac Debache,
Lorène Jeantet,
Damien Chevallier,
Audrey Bergouignan,
Cédric Sueur
Affiliations
Isaac Debache
Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France
Lorène Jeantet
Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France
Damien Chevallier
Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France
Audrey Bergouignan
Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France
Cédric Sueur
Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France
Here we propose a new machine learning algorithm for classification of human activities by means of accelerometer and gyroscope signals. Based on a novel hierarchical system of logistic regression classifiers and a relatively small set of features extracted from the filtered signals, the proposed algorithm outperformed previous work on the DaLiAc (Daily Life Activity) and mHealth datasets. The algorithm also represents a significant improvement in terms of computational costs and requires no feature selection and hyper-parameter tuning. The algorithm still showed a robust performance with only two (ankle and wrist) out of the four devices (chest, wrist, hip and ankle) placed on the body (96.8% vs. 97.3% mean accuracy for the DaLiAc dataset). The present work shows that low-complexity models can compete with heavy, inefficient models in classification of advanced activities when designed with a careful upstream inspection of the data.