PLoS ONE (Jan 2013)

Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury.

  • Wan-Chun You,
  • Chun-Xi Wang,
  • Yun-Xi Pan,
  • Xin Zhang,
  • Xiao-Ming Zhou,
  • Xiang-Sheng Zhang,
  • Ji-Xin Shi,
  • Meng-Liang Zhou

DOI
https://doi.org/10.1371/journal.pone.0060290
Journal volume & issue
Vol. 8, no. 3
p. e60290

Abstract

Read online

It has been reported that inflammation is involved in brain injury after subarachnoid hemorrhage (SAH). Nuclear factor-κB (NF-κB) is a key transcriptional regulator of inflammatory genes. Here, we used pyrrolidine dithiocarbamate(PDTC), an inhibitor of NF-κB, through intracisternal injection to study the role of NF-κB in delayed brain injury after SAH. A total of 55 rabbits were randomly divided into five groups: the control group; the SAH groups including Day-3, 5, and 7 SAH groups (the rabbits in these groups were sacrificed at 3, 5, 7 days after SAH, respectively); and the PDTC group (n = 11 for each group). Electrophoretic mobility shift assay (EMSA) was performed to detect NF-κB DNA-binding activity. The mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and intercellular adhesion molecule (ICAM)-1 were evaluated by RT-PCR analysis. Deoxyribonucleic acid fragmentation was detected by TUNEL and p65 immunoactivity was assessed by immunohistochemistry. Our results showed the activation of NF-κB after SAH, especially at day 3 and 5. The activated p65 was detected in neurons. NF-κB DNA-binding activity was suppressed by intracisternal administration of PDTC. Increased levels of the TNF-α, IL-1β, and ICAM-1 mRNA were found in the brain at day 5 after SAH, and which were suppressed in the PDTC group. The number of TUNEL-positive cells also decreased significantly in the PDTC group compared with that in the Day-5 SAH group. These results demonstrated that the activated NF-κB in neurons after SAH plays an important role in regulating the expressions of inflammatory genes in the brain, and ultimately contributes to delayed brain injury.