Plants (Sep 2023)

Comparative Analysis of Circadian Transcriptomes Reveals Circadian Characteristics between <i>Arabidopsis</i> and Soybean

  • Xingwei Wang,
  • Yanfei Hu,
  • Wei Wang

DOI
https://doi.org/10.3390/plants12193344
Journal volume & issue
Vol. 12, no. 19
p. 3344

Abstract

Read online

The circadian clock, an endogenous timing system, exists in nearly all organisms on Earth. The plant circadian clock has been found to be intricately linked with various essential biological activities. Extensive studies of the plant circadian clock have yielded valuable applications. However, the distinctions of circadian clocks in two important plant species, Arabidopsis thaliana and Glycine max (soybean), remain largely unexplored. This study endeavors to address this gap by conducting a comprehensive comparison of the circadian transcriptome profiles of Arabidopsis and soybean to uncover their distinct circadian characteristics. Utilizing non-linear regression fitting (COS) integrated with weights, we identified circadian rhythmic genes within both organisms. Through an in-depth exploration of circadian parameters, we unveiled notable differences between Arabidopsis and soybean. Furthermore, our analysis of core circadian clock genes shed light on the distinctions in central oscillators between these two species. Additionally, we observed that the homologous genes of Arabidopsis circadian clock genes in soybean exert a significant influence on the regulation of flowering and maturity of soybean. This phenomenon appears to stem from shifts in circadian parameters within soybean genes. These findings highlight contrasting biological activities under circadian regulation in Arabidopsis and soybean. This study not only underscores the distinctive attributes of these species, but also offers valuable insights for further scrutiny into the soybean circadian clock and its potential applications.

Keywords