Scientific Reports (Jul 2017)

Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system

  • Lei Zhang,
  • Xueming Yang,
  • Decai Gao,
  • Lingli Wang,
  • Jie Li,
  • Zhanbo Wei,
  • Yuanliang Shi

DOI
https://doi.org/10.1038/s41598-017-06248-2
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 13

Abstract

Read online

Abstract To demonstrate the responses of plant (Pakchoi) and soil to poly-γ-glutamic acid (γ-PGA) is essential to better understand the pathways of the promotional effect of γ-PGA on plant growth. In this study, the effects of γ-PGA on soil nutrient availability, plant nutrient uptake ability, plant metabolism and its distribution in a plant-soil system were tested using labeled γ-PGA synthesized from 13C1-15N-L-glutamic acid (L-Glu). γ-PGA significantly improved plant uptake of nitrogen (N), phosphorus (P), and potassium (K) and hence increased plant biomass. γ-PGA greatly strengthened the plant nutrient uptake capacity through enhancing both root biomass and activity. γ-PGA affected carbon (C) and N metabolism in plant which was evidenced with increased soluble sugar contents and decreased nitrate and free amino acids contents. About 26.5% of the γ-PGA-N uptake during the first 24 h, after γ-PGA application, was in the form of intact organic molecular. At plant harvest, 29.7% and 59.4% of γ-PGA-15N was recovered in plant and soil, respectively, with a 5.64% of plant N nutrition being derived from γ-PGA-N. The improved plant nutrient uptake capacity and soil nutrient availability by γ-PGA may partly explain the promotional effect of γ-PGA, however, the underlying reason may be closely related to L-Glu.