Cells (Jan 2024)

EZH2 Inhibition Sensitizes IDH1R132H-Mutant Gliomas to Histone Deacetylase Inhibitor

  • Lisa Sprinzen,
  • Franklin Garcia,
  • Angeliki Mela,
  • Liang Lei,
  • Pavan Upadhyayula,
  • Aayushi Mahajan,
  • Nelson Humala,
  • Lisa Manier,
  • Richard Caprioli,
  • Alfredo Quiñones-Hinojosa,
  • Patrizia Casaccia,
  • Peter Canoll

DOI
https://doi.org/10.3390/cells13030219
Journal volume & issue
Vol. 13, no. 3
p. 219

Abstract

Read online

Isocitrate Dehydrogenase-1 (IDH1) is commonly mutated in lower-grade diffuse gliomas. The IDH1R132H mutation is an important diagnostic tool for tumor diagnosis and prognosis; however, its role in glioma development, and its impact on response to therapy, is not fully understood. We developed a murine model of proneural IDH1R132H-mutated glioma that shows elevated production of 2-hydroxyglutarate (2-HG) and increased trimethylation of lysine residue K27 on histone H3 (H3K27me3) compared to IDH1 wild-type tumors. We found that using Tazemetostat to inhibit the methyltransferase for H3K27, Enhancer of Zeste 2 (EZH2), reduced H3K27me3 levels and increased acetylation on H3K27. We also found that, although the histone deacetylase inhibitor (HDACi) Panobinostat was less cytotoxic in IDH1R132H-mutated cells (either isolated from murine glioma or oligodendrocyte progenitor cells infected in vitro with a retrovirus expressing IDH1R132H) compared to IDH1-wild-type cells, combination treatment with Tazemetostat is synergistic in both mutant and wild-type models. These findings indicate a novel therapeutic strategy for IDH1-mutated gliomas that targets the specific epigenetic alteration in these tumors.

Keywords