Metals (Oct 2020)

Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests

  • Josip Brnic,
  • Marino Brcic,
  • Sanjin Krscanski,
  • Jitai Niu,
  • Sijie Chen,
  • Zeng Gao

DOI
https://doi.org/10.3390/met10111445
Journal volume & issue
Vol. 10, no. 11
p. 1445

Abstract

Read online

In this paper, the mechanical properties of the material that define its mechanical behavior are experimentally investigated. All performed experimental tests and analyzes are related to C15E + C steel. The tested material was delivered as cold drawn round bar. It is usually used in mechanical engineering for design of low stressed components. Experimentally obtained results relate to the maximum tensile strength, yield strength, creep behavior, and uniaxial fully reversed high cyclic fatigue. Results representing mechanical properties are shown in the form of engineering stress–strain diagrams, while creep behavior of the material at different temperatures and different stress levels is displayed in the form of creep curves. Tests representing uniaxial cyclic fully reversed mechanical fatigue at constant stresses and room temperature in air are shown in the form of fatigue-life (S−N) diagram. Some of the experimental results obtained are as follows: ultimate tensile strength (σm(20 °C/500 °C)=(598/230) MPa), yield strength (σ0.2(20 °C/500 °C)=(580/ 214 ) MPa ), modulus of elasticity (E(20 °C/500 °C)=(213/106) GPa), and fatigue limit (σf(20 °C, R=−1)=250.83 MPa). The fatigue tests were performed at frequency of 40 Hz and at room temperature (20 °C) in air, with stress ratio of R=−1.

Keywords