Applied Sciences (Oct 2021)

Detection of Pediatric Femur Configuration on X-ray Images

  • Marta Drążkowska

DOI
https://doi.org/10.3390/app11209538
Journal volume & issue
Vol. 11, no. 20
p. 9538

Abstract

Read online

In this paper, we present a fully automatic solution for denoting bone configuration on two-dimensional images. A dataset of 300 X-ray images of children’s knee joints was collected. The strict experimental protocol established in this study increased the difficulty of post-processing. Therefore, we tackled the problem of obtaining reliable information from medical image data of insufficient quality. We proposed a set of features that unambiguously denoted configuration of the bone on the image, namely the femur. It was crucial to define the features that were independent of age, since age variability of subjects was high. Subsequently, we defined image keypoints directly corresponding to those features. Their positions were used to determine the coordinate system denoting femur configuration. A complex keypoint detector was proposed, composed of two different estimator architectures: gradient-based and based on the convolutional neural network. The positions of the keypoints were used to determine the configuration of the femur on each image frame. The overall performance of both estimators working in parallel was evaluated using X-ray images from the publicly available LERA dataset.

Keywords