Nanomaterials (Jun 2017)

Optimized Photodynamic Therapy with Multifunctional Cobalt Magnetic Nanoparticles

  • Kyong-Hoon Choi,
  • Ki Chang Nam,
  • Un-Ho Kim,
  • Guangsup Cho,
  • Jin-Seung Jung,
  • Bong Joo Park

DOI
https://doi.org/10.3390/nano7060144
Journal volume & issue
Vol. 7, no. 6
p. 144

Abstract

Read online

Photodynamic therapy (PDT) has been adopted as a minimally invasive approach for the localized treatment of superficial tumors, representing an improvement in the care of cancer patients. To improve the efficacy of PDT, it is important to first select an optimized nanocarrier and determine the influence of light parameters on the photosensitizing agent. In particular, much more knowledge concerning the importance of fluence and exposure time is required to gain a better understanding of the photodynamic efficacy. In the present study, we synthesized novel folic acid-(FA) and hematoporphyrin (HP)-conjugated multifunctional magnetic nanoparticles (CoFe2O4-HPs-FAs), which were characterized as effective anticancer reagents for PDT, and evaluated the influence of incubation time and light exposure time on the photodynamic anticancer activities of CoFe2O4-HPs-FAs in prostate cancer cells (PC-3 cells). The results indicated that the same fluence at different exposure times resulted in changes in the anticancer activities on PC-3 cells as well as in reactive oxygen species formation. In addition, an increase of the fluence showed an improvement for cell photo-inactivation. Therefore, we have established optimized conditions for new multifunctional magnetic nanoparticles with direct application for improving PDT for cancer patients.

Keywords