BMC Musculoskeletal Disorders (Feb 2006)

Improving the sensitivity of the hop index in patients with an ACL deficient knee by transforming the hop distance scores

  • Thomas Scott G,
  • O'Donnell Siobhan,
  • Marks Paul

DOI
https://doi.org/10.1186/1471-2474-7-9
Journal volume & issue
Vol. 7, no. 1
p. 9

Abstract

Read online

Abstract Background The one leg hop for distance is one of the most commonly employed functional tests utilized in the evaluation of the ACL deficient and reconstructed patient. While the reliability of the hop test scores has been well established, validity studies have revealed low sensitivity rates in detecting functional limitations using the hop index (the ratio or percentage of limb performance). However, the impact of the inherent limitations associated with the hop index have not been investigated to date. One specific limitation relates to the impact of the differences in the underlying hop distance scores. Therefore, this pilot study set out to determine: 1) the impact that between limb differences in hop distance has on the sensitivity of the hop index in detecting functional limitations and; 2) whether a logarithmic transformation of the underlying hop distance scores improves the sensitivity of the hop index. Methods A cross sectional design involving the evaluation of one leg hop for distance performance in a consecutive sample of 10 ACL deficient males with an isolated ACL tear awaiting reconstructive surgery and nine gender, age-matched controls. Results In the ACL deficient, the hop index was associated with the distance hopped on the non-injured limb (r = -0.66, p = 0.04) but not on the injured limb. Transformation (logarithmic) of the hop distance scores and re-calculation of the hop index using the transformed scores increased the sensitivity of the hop index in the detection of functional limitations from 20 to 60% and 50 to 70% using the normal limb symmetry reference norms of ≥ 85% and 90% respectively. Conclusion The distance hopped on the non-injured limb is a critical factor in detecting functional limitations using the hop index in patients with an ACL deficient knee. Logarithmic transformation of the hop distance scores minimizes the effect of the arithmetic differences between limbs however; the sensitivity of the hop index in detecting abnormal limb symmetry remains low.