Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images
Marco La Salvia,
Emanuele Torti,
Raquel Leon,
Himar Fabelo,
Samuel Ortega,
Francisco Balea-Fernandez,
Beatriz Martinez-Vega,
Irene Castaño,
Pablo Almeida,
Gregorio Carretero,
Javier A. Hernandez,
Gustavo M. Callico,
Francesco Leporati
Affiliations
Marco La Salvia
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
Emanuele Torti
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
Raquel Leon
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
Himar Fabelo
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
Samuel Ortega
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
Francisco Balea-Fernandez
Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain
Beatriz Martinez-Vega
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
Irene Castaño
Department of Dermatology, Hospital Universitario de Gran Canaria Doctor Negrín, Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canaria, Spain
Pablo Almeida
Department of Dermatology, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Maritima del Sur, s/n, 35016 Las Palmas de Gran Canaria, Spain
Gregorio Carretero
Department of Dermatology, Hospital Universitario de Gran Canaria Doctor Negrín, Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canaria, Spain
Javier A. Hernandez
Department of Dermatology, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Maritima del Sur, s/n, 35016 Las Palmas de Gran Canaria, Spain
Gustavo M. Callico
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
Francesco Leporati
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.