Deep Learning Enhanced Multisensor Data Fusion for Building Assessment Using Multispectral Voxels and Self-Organizing Maps
Javier Raimundo,
Serafin Lopez-Cuervo Medina,
Julian Aguirre de Mata,
Tomás Ramón Herrero-Tejedor,
Enrique Priego-de-los-Santos
Affiliations
Javier Raimundo
Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Serafin Lopez-Cuervo Medina
Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Julian Aguirre de Mata
Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Tomás Ramón Herrero-Tejedor
Departamento de Ingeniería Agroforestal, Universidad Politécnica de Madrid, Campus Ciudad Universitaria, Av. Puerta de Hierro, nº 2–4, 28040 Madrid, Spain
Enrique Priego-de-los-Santos
Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
Efforts in the domain of building studies involve the use of a diverse array of geomatic sensors, some providing invaluable information in the form of three-dimensional point clouds and associated registered properties. However, managing the vast amounts of data generated by these sensors presents significant challenges. To ensure the effective use of multisensor data in the context of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a novel approach to multisensor data fusion using multispectral voxels, which enable the application of deep learning algorithms as the self-organizing maps to identify and exploit the relationships between the different sensor data. Our results indicate that this approach provides a comprehensive view of the building structure and its potential pathologies, and holds great promise for revolutionizing the study of historical buildings and their potential applications in the field of cultural heritage preservation.