Moroccan Journal of Pure and Applied Analysis (May 2023)
Cyclicity in de Branges–Rovnyak spaces
Abstract
In this paper, we study the cyclicity problem with respect to the forward shift operator Sb acting on the de Branges–Rovnyak space ℋ (b) associated to a function b in the closed unit ball of H∞ and satisfying log(1− |b| ∈ L1(𝕋). We present a characterisation of cyclic vectors for Sb when b is a rational function which is not a finite Blaschke product. This characterisation can be derived from the description, given in [22], of invariant subspaces of Sb in this case, but we provide here an elementary proof. We also study the situation where b has the form b = (1+ I)/2, where I is a non-constant inner function such that the associated model space KI = ℋ (I) has an orthonormal basis of reproducing kernels.
Keywords