Shanghai Jiaotong Daxue xuebao (Nov 2022)
Unmanned Aerial Vehicle Situation Assessment Based on Cumulative Prospect Theory and Three-Way Decision
Abstract
General uninhabited aerial vehicle (UAV) situation assessment methods do not consider the influence of complex external environment on the decision-maker, and usually only get the ranking results of the evaluation. Since the decision-maker needs to make decisions in a short period of time, misjudgments or missing strike windows often occur. To address this problem, a three-way decision model based on the cumulative prospect theory is proposed. First, the method the utilizes intuitionistic fuzzy technique for order preference by similarity to an ideal solution to estimate the conditional probability of each target and obtains the situation assessment result. Next, the method calculates the intuitionistic fuzzy situation information obtained by the UAV based on the cumulative prospect theory, and obtains the corresponding cumulative prospect value when each target performs different actions. Finally, based on the principle of maximizing the cumulative prospect value, a new three-way decision rule is derived to divide the situational assessment results into three regions. The experimental analysis shows that the method not only obtains the target threat ranking, but also classifies the target threat level objectively. At the same time, it considers the psychology of the decision-maker in the assessment process, and obtains the target threat assessment results that meet the traits of the decision-maker, providing a reasonable decision support for the complex and changing air combat.
Keywords