Molecules (Dec 2022)

Pyridinium Salts of Dehydrated Lanthanide Polychlorides

  • Roger E. Cramer,
  • Esteban M. Baca,
  • Timothy J. Boyle

DOI
https://doi.org/10.3390/molecules28010283
Journal volume & issue
Vol. 28, no. 1
p. 283

Abstract

Read online

The reaction of lanthanide (Ln) chloride hydrates ([Ln(H2O)n(Cl)3]) with pyridine (py) yielded a set of dehydrated pyridinium (py-H) Ln-polychloride salts. These species were crystallographically characterized as [[py-H-py][py-H]2[LnCl6]] (Ln-6; Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) or [[py-H]2[LnCl5(py)]] ((Ln-5; Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu). The Ln-6 metal centers adopt an octahedral (OC-6) geometry, binding six Cl ligands. The −3 charge is off-set by two py-H moieties and a di-pyridinium (py-H-py) ion. For the Ln-5 species, an OC-6 anion is formed by the Ln cation binding a single py and five Cl ligands. The remaining −2 charge is offset by two py-H+ cations that H-bond to the anion. Significant H-bonding occurs between the various cation/anion moieties inducing the molecular stability. The change in structure from the Ln-6 to Ln-5 is believed to be due to the Ln-contraction producing a smaller unit cell, which prevents formation of the py-H-py+ cation, leading to the loss of the H-bonding-induced stability. Based on this, it was determined that the Ln-5 structures only exist when the lattice energy is small. While dehydrated polychloride salts can be produced by simply mixing in pyridine, the final structures adopted result from a delicate balance of cation size, Coulombic charge, and stabilizing H-bonding.

Keywords