CQD Revista Eletrônica Paulista de Matemática (Nov 2022)
Comparação entre métodos numéricos computacionais na solução de um problema de valor inicial
Abstract
Equações diferenciais ordinárias (EDO) ocorrem com muita frequência na descrição de fenômenos da natureza. Há vários métodos que resolvem analiticamente uma EDO, entretanto nem sempre é possível obter essa solução. Neste caso, os métodos numéricos são utilizados para se encontrar uma solução aproximada. Neste trabalho discute-se o desenvolvimento e a utilização de dois métodos numéricos para resolução de EDO’s. Para isso, concentra-se, principalmente, em problemas de valor inicial para equações de primeira ordem. Neste contexto, trata-se da comparação de dois métodos numéricos computacionais, utilizados para aproximar equações diferenciais ordinárias, dado um problema de valor inicial (PVI) e a referente solução analítica da equação. O primeiro método utilizado é o Taylor de ordem 2 e o segundo é o RungeKutta de ordem 3. O principal objetivo é implementar os dois métodos numéricos no software MatLab e analisar se eles aproximam-se da solução exata. Com os resultados obtidos, deve-se concluir qual dos dois métodos é mais eficaz para esse tipo de problema.