Journal of Dairy Science (Dec 2023)

Effects of feed additives on rumen function and bacterial and archaeal communities during a starch and fructose challenge

  • H.M. Golder,
  • S.E. Denman,
  • C. McSweeney,
  • P. Celi,
  • I.J. Lean

Journal volume & issue
Vol. 106, no. 12
pp. 8787 – 8808

Abstract

Read online

ABSTRACT: The objective of this study was to improve understandings of the rumen microbial ecosystem during ruminal acidosis and responses to feed additives to improve prudent use strategies for ruminal acidosis control. Rumen bacterial and archaeal community composition (BCC) and its associations with rumen fermentation measures were examined in Holstein heifers fed feed additives and challenged with starch and fructose. Heifers (n = 40) were randomly allocated to 5 treatment groups: (1) control (no additives); (2) virginiamycin (VM; 200 mg/d); (3) monensin (MT; 200 mg/d) + tylosin (110 mg/d); (4) monensin (MLY; 220 mg/d) + live yeast (5.0 × 1012 cfu/d); (5) sodium bicarbonate (BUF; 200 g/d) + magnesium oxide (30 g/d). Heifers were fed twice daily a 62% forage:38% concentrate total mixed ration at 1.25% of body weight (BW) dry matter (DM)/d for a 20-d adaptation period with their additive(s). Fructose (0.1% of BW/d) was added to the ration for the last 10 d of adaptation. On d 21 heifers were challenged once with a ration consisting of 1.0% of BW DM wheat and 0.2% of BW fructose plus their additive(s). A rumen sample was collected from each heifer via stomach tube weekly (d 0, 7, 14) and 5 times over a 3.6 h period at 5, 65, 115, 165, and 215 min after consumption of the challenge ration (d 21) and analyzed for pH, and ammonia, d- and l-lactate, volatile fatty acids (VFA), and histamine concentrations and total bacteria and archaea. The 16S rRNA gene spanning the V4 region was PCR amplified and sequenced. Alpha and β diversity and associations of relative abundances of taxa with rumen fermentation measures were evaluated. Rumen BCC shifted among treatment groups in the adaptation period and across the challenge sampling period, indicating the feed additives had different modes of action. The monensin-containing treatment groups, MT and MLY often had similar relative abundances of rumen bacterial phyla and families. The MLY treatment group was characterized in the challenge period by increased relative abundances of the lactate utilizing genera Anaerovibrio and Megasphaera. The MLY treatment group also had increased diversity of ruminal bacteria which may provide resilience to changes in substrates. The control and BUF treatment groups were most similar in BCC. A redundancy analysis showed the MLY treatment group differed from all other treatment groups and concentrations of histamine and valerate in the rumen were associated with the most variation in the microbiota, 5.3% and 4.8%, respectively. It was evident from the taxa common to all treatment groups that cattle have a core microbiota. Functional redundancy of rumen bacteria which was reflected in the greater sensitivity for the rumen BCC than rumen fermentation measures likely provide resilience to changes in substrate. This functional redundancy of microbes in cattle suggests that there is no single optimal ruminal microbial population and no universally superior feed additive(s). In summary, differences in modes of action suggest the potential for more targeted and improved prudent use of feed additives with no single feed additive(s) providing an optimal BCC in all heifers.

Keywords