Applied Sciences (May 2019)

Box-Jenkins Transfer Function Modelling for Reliable Determination of VO<sub>2</sub> Kinetics in Patients with COPD

  • Joren Buekers,
  • Jan Theunis,
  • Alberto Peña Fernández,
  • Emiel F. M. Wouters,
  • Martijn A. Spruit,
  • Patrick De Boever,
  • Jean-Marie Aerts

DOI
https://doi.org/10.3390/app9091822
Journal volume & issue
Vol. 9, no. 9
p. 1822

Abstract

Read online

Oxygen uptake (VO2) kinetics provide information about the ability to respond to the increased physical load during a constant work rate test (CWRT). Box-Jenkins transfer function (BJ-TF) models can extract kinetic features from the phase II VO2 response during a CWRT, without being affected by unwanted noise contributions (e.g., phase I contribution or measurement noise). CWRT data of 18 COPD patients were used to compare model fits and kinetic feature values between BJ-TF models and three typically applied exponential modelling methods. Autocorrelation tests and normalised root-mean-squared error values (BJ-TF: 2.8 ± 1.3%; exponential methods A, B and C: 10.5 ± 5.8%, 11.3 ± 5.2% and 12.1 ± 7.0%; p < 0.05) showed that BJ-TF models, in contrast to exponential models, could account for the most important noise contributions. This led to more reliable kinetic feature values compared to methods A and B (e.g., mean response time (MRT), BJ-TF: 74 ± 20 s; methods A-B: 100 ± 56 s−88 ± 52 s; p < 0.05). Only exponential modelling method C provided kinetic feature values comparable to BJ-TF features values (e.g., MRT: 75 ± 20 s). Based on theoretical considerations, we recommend using BJ-TF models, rather than exponential models, for reliable determinations of VO2 kinetics.

Keywords