International Journal of Rotating Machinery (Jan 2004)

Transverse Crack Modeling and Validation in Rotor Systems Including Thermal Effects

  • N. Bachschmid,
  • P. Pennacchi,
  • E. Tanzi,
  • S. Audebert

DOI
https://doi.org/10.1155/S1023621X04000272
Journal volume & issue
Vol. 10, no. 4
pp. 253 – 263

Abstract

Read online

In this article, a model is described that allows one to simulate the static behavior of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behavior of the rotating cracked shaft. The crack “breaths,” i.e., the mechanism of opening and closing of the crack, is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress is time-depending with a period equal to the period of rotation, thus the crack “periodically breaths.” An original simplified model is described that allows cracks of different shape to be modeled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. Firstly, the crack “breathing” mechanism, simulated with the model, has been compared with the results obtained by a nonlinear 3-D FEM calculation and a good agreement in the results has been observed. Secondly, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above-mentioned 3-D FEM. There is a good agreement in the results, of this case as well.