Parasites & Vectors (Jan 2019)

Genome-wide identification and characterization of transfer RNA-derived small RNAs in Plasmodium falciparum

  • Zhensheng Wang,
  • Chunyan Wei,
  • Xiao Hao,
  • Weiwei Deng,
  • Lianhui Zhang,
  • Zenglei Wang,
  • Heng Wang

DOI
https://doi.org/10.1186/s13071-019-3301-6
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Transfer RNA (tRNA)-derived fragments (tRFs) have been widely identified in nature, functioning in diverse biological and pathological situations. Yet, the presence of these small RNAs in Plasmodium spp. remains unknown. Systematic identification and characterization of tRFs is therefore highly needed to understand further their roles in Plasmodium parasites, particularly in the virulent Plasmodium falciparum parasite. Results Genome-wide small RNAs with sizes ranging from 18–30 nucleotides from P. falciparum were deep-sequenced via Illumina HiSeq 2000 technology. In-depth analysis revealed the presence of a vast number of small RNAs originating from tRNA-coding genes, responsible for 22.4% of the total reads as the second predominant group. Three P. falciparum-derived tRF types (ptRFs) were identified as 5'ptRFs, mid-ptRFs and 3'ptRFs. The majority (90%) of ptRFs were derived from tRNAs that coded eight amino acids: Pro, Phe, Asn, Gly, Cys, Gln, His and Ala. Stem-loop reverse transcription polymerase chain reaction further confirmed the presence of tRFs in the blood stages of P. falciparum. Four new motifs with an enriched G/C feature were determined at cleavage sites that might guide the generation of ptRFs. Conclusions To our knowledge, this is the first report of a genome-wide investigation of ptRFs from Plasmodium species. The identification of ptRFs reveals a complex small RNA system manipulated by the malaria parasite, and might promote research on the function of tRFs in the pathogenesis of Plasmodium infections.

Keywords