Opuscula Mathematica (Jan 2005)

Numerical approximations of difference functional equations and applications

  • Zdzisław Kamont

Journal volume & issue
Vol. 25, no. 1
pp. 109 – 130

Abstract

Read online

We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.

Keywords