Construction of Linear Models for the Normalized Vegetation Index (NDVI) for Coffee Crops in Peru Based on Historical Atmospheric Variables from the Climate Engine Platform
Ligia García,
Jaris Veneros,
Manuel Oliva-Cruz,
Neiro Olivares,
Segundo G. Chavez,
Nilton B. Rojas-Briceño
Affiliations
Ligia García
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
Jaris Veneros
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
Manuel Oliva-Cruz
Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
Neiro Olivares
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
Segundo G. Chavez
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
Nilton B. Rojas-Briceño
Grupo de Investigación en Ciencia de la Información Geoespacial, Escuela Profesional de Ingeniería Ambiental, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Moquegua, Pacocha 18610, Peru
The rapid development of digital tools for crop management offers new opportunities to mitigate the effects of climate change on agriculture. This study examines the Normalized Difference Vegetation Index (NDVI) in coffee-growing areas of the province of Rodriguez de Mendoza, southern Peru, from 2001 to 2022. The objectives were the following: (a) to analyze NDVI trends in these areas; (b) to investigate trends in climatic variables and their correlations with altitude and NDVI; and c) to develop linear models tailored to each coffee-growing area. The study identified significant differences in NDVI trends among coffee plants, with mean NDVI values ranging from about 0.6 to 0.8. These values suggest the presence of stress conditions that should be monitored to improve crop quality, particularly in Huambo. Variability in rainfall, maximum and minimum temperatures, relative humidity, and altitude was also observed, with NDVI values showing a strong negative correlation with altitude. These results are crucial for making informed strategic decisions in integrated crop management and for monitoring crop health using vegetation indices.