Advanced Biomedical Research (Jan 2017)

Structural Insight into Anaphase Promoting Complex 3 Structure and Docking with a Natural Inhibitory Compound

  • Hamzeh Rahimi,
  • Mohammad Ali Shokrgozar,
  • Armin Madadkar-Sobhani,
  • Reza Mahdian,
  • Alireza Foroumadi,
  • Morteza Karimipoor

DOI
https://doi.org/10.4103/2277-9175.201683
Journal volume & issue
Vol. 6, no. 1
pp. 26 – 26

Abstract

Read online

Background: Anaphase promoting complex (APC) is the biggest Cullin-RING E3 ligase and is very important in cell cycle control; many anti-cancer agents target this. APC controls the onset of chromosome separation and mitotic exit through securin and cyclin B degradation, respectively. Its APC3 subunit identifies the APC activators-Cdh1 and Cdc20. Materials and Methods: The structural model of the APC3 subunit of APC was developed by means of computational techniques; the binding of a natural inhibitory compound to APC3 was also investigated. Results: It was found that APC3 structure consists of numerous helices organized in anti-parallel and the overall model is superhelical of tetratrico-peptide repeat (TPR) domains. Furthermore, binding pocket of the natural inhibitory compound as APC3 inhibitor was shown. Conclusion: The findings are beneficial to understand the mechanism of the APC activation and design inhibitory compounds.

Keywords