The roles of traveling magnetic fields (TMFs) within the transport phenomena during the directional solidification of nickel-based superalloys were simulated. The evolution of thermal field, flow field and solid-liquid interface morphology during the solidification process under both natural and forced convection conditions were also simulated and compared. The strength of TMFs window that suppresses the flow of the interfacial front in the melt was quantified. The association between flow velocity at the interface front and defect formation was discussed.