Applied Sciences (Nov 2024)
Transient Stability Control Strategy Based on Uncertainty Quantification for Disturbances in Hybrid Energy Storage Microgrids
Abstract
The transient stability control for disturbances in microgrids based on a lithium-ion battery–supercapacitor hybrid energy storage system (HESS) is a challenging problem, which not only involves needing to maintain stability under a dynamic load and changing external conditions but also involves dealing with the energy exchange between the battery and the supercapacitor, the dynamic change of the charging and discharging process and other factors. This paper focuses on the bus voltage control of HESS under load mutations and system uncertainty disturbances. A BP Neural Network-based Active Disturbance Rejection Controller (BP-ADRC) is proposed within the traditional voltage-current dual-loop control framework, leveraging uncertainty quantification. Firstly, system uncertainties are quantified using system-identification tools based on measurable information. Subsequently, an Extended State Observer (ESO) is designed to estimate the total system disturbance based on the quantified information. Thirdly, an adaptive BP Neural Network-based Active Disturbance Rejection Controller is studied to achieve transient stability control of disturbances. Robust controllers, PID controllers and second-order linear Active Disturbance Rejection Controllers are employed as benchmark strategies to design simulation experiments. Simulation results indicate that, compared to other benchmark strategies, the BP-ADRC controller based on uncertainty quantification exhibits superior tracking and disturbance-rejection performance in transient stability control within microgrids of hybrid energy storage systems.
Keywords