Revista Cubana de Ciencias Informáticas (Dec 2018)
Selección de variables para el diagnóstico de fallos en chumaceras.
Abstract
En la selección de los rasgos más importantes para el diagnóstico de fallos de chumaceras no se considera el conocimiento experto que se expresa en variables no numéricas, sin embargo, esta información puede ser vital para mejorar la eficiencia del diagnóstico. Este trabajo fue desarrollado con el objetivo identificar los rasgos más relevantes para clasificar un grupo de fallos ocurridos en las chumaceras de una turbina de vapor. Los conjuntos de valores de las variables que soportan el trabajo corresponden a los datos almacenados en reportes de diagnóstico y mantenimiento de una termoeléctrica en explotación. Las técnicas aplicadas para procesar los datos cuantitativos y cualitativos son herramientas del enfoque lógico combinatorio al reconocimiento de patrones. Mediante diferentes criterios de comparación se determinó la confusión de los rasgos del conjunto inicial y posteriormente los testores y testores típicos. Finalmente se calculó el peso informacional de los rasgos. Los resultados alcanzados mostraron, entre otras consideraciones, que la relevancia de los rasgos cualitativos que se incorporaron a la descripción de los fallos es superior a la de los rasgos numéricos.