Shanghai Jiaotong Daxue xuebao (Apr 2025)
An Improved Generalized Flexibility Sensitivity Method for Structural Damage Detection
Abstract
This paper proposes an improved generalized flexibility sensitivity method for structural damage detection. The proposed approach improves the accuracy of the original generalized flexibility sensitivity method by increasing the order of the sensitivity in the damage detection equations. Additionly, restraint conditions are applied to the damage coefficients to ensure that they meet the necessary requirements. Then, the resulting nonlinear damage detection equations are solved using sequential quadratic programming method, whose calculation is simple and efficient. Finally, the proposed approach is validated numerically and experimentally using a truss structure finite element model and a 7-story steel-frame structure experiment, respectively. The results show that the proposed approach provides more accurate damage location and severity detection compared with the original method. Furthermore, it is better suited for cases involving large damage severity.
Keywords