Metabolites (Sep 2024)

Functional Muffins Exert Bifidogenic Effects along with Highly Product-Specific Effects on the Human Gut Microbiota Ex Vivo

  • Stef Deyaert,
  • Jonas Poppe,
  • Lam Dai Vu,
  • Aurélien Baudot,
  • Sarah Bubeck,
  • Thomas Bayne,
  • Kiran Krishnan,
  • Morgan Giusto,
  • Samuel Moltz,
  • Pieter Van den Abbeele

DOI
https://doi.org/10.3390/metabo14090497
Journal volume & issue
Vol. 14, no. 9
p. 497

Abstract

Read online

GoodBiome™ Foods are functional foods containing a probiotic (Bacillus subtilis HU58™) and prebiotics (mainly inulin). Their effects on the human gut microbiota were assessed using ex vivo SIFR® technology, which has been validated to provide clinically predictive insights. GoodBiome™ Foods (BBM/LCM/OSM) were subjected to oral, gastric, and small intestinal digestion/absorption, after which their impact on the gut microbiome of four adults was assessed (n = 3). All GoodBiome™ Foods boosted health-related SCFA acetate (+13.1/14.1/13.8 mM for BBM/LCM/OSM), propionate (particularly OSM; +7.4/7.5/8.9 mM for BBM/LCM/OSM) and butyrate (particularly BBM; +2.6/2.1/1.4 mM for BBM/LCM/OSM). This is related to the increase in Bifidobacterium species (B. catenulatum, B. adolescentis, B. pseudocatenulatum), Coprococcus catus and Bacteroidetes members (Bacteroides caccae, Phocaeicola dorei, P. massiliensis), likely mediated via inulin. Further, the potent propionogenic potential of OSM related to increased Bacteroidetes members known to ferment oats (s key ingredient of OSM), while the butyrogenic potential of BBM related to a specific increase in Anaerobutyricum hallii, a butyrate producer specialized in the fermentation of erythritol (key ingredient of BBM). In addition, OSM/BBM suppressed the pathogen Clostridioides difficile, potentially due to inclusion of HU58™ in GoodBiome™ Foods. Finally, all products enhanced a spectrum of metabolites well beyond SCFA, including vitamins (B3/B6), essential amino acids, and health-related metabolites such as indole-3-propionic acid. Overall, the addition of specific ingredients to complex foods was shown to specifically modulate the gut microbiome, potentially contributing to health benefits. Noticeably, our findings contradict a recent in vitro study, underscoring the critical role of employing a physiologically relevant digestion/absorption procedure for a more accurate evaluation of the microbiome-modulating potential of complex foods.

Keywords