Nanophotonics (Jul 2020)

Robust optical physical unclonable function using disordered photonic integrated circuits

  • Bin Tarik Farhan,
  • Famili Azadeh,
  • Lao Yingjie,
  • Ryckman Judson D.

DOI
https://doi.org/10.1515/nanoph-2020-0049
Journal volume & issue
Vol. 9, no. 9
pp. 2817 – 2828

Abstract

Read online

Physical unclonable function (PUF) has emerged as a promising and important security primitive for use in modern systems and devices, due to their increasingly embedded, distributed, unsupervised, and physically exposed nature. However, optical PUFs based on speckle patterns, chaos, or ‘strong’ disorder are so far notoriously sensitive to probing and/or environmental variations. Here we report an optical PUF designed for robustness against fluctuations in optical angular/spatial alignment, polarization, and temperature. This is achieved using an integrated quasicrystal interferometer (QCI) which sensitively probes disorder while: (1) ensuring all modes are engineered to exhibit approximately the same confinement factor in the predominant thermo-optic medium (e. g. silicon), and (2) constraining the transverse spatial-mode and polarization degrees of freedom. This demonstration unveils a new means for amplifying and harnessing the effects of ‘weak’ disorder in photonics and is an important and enabling step toward new generations of optics-enabled hardware and information security devices.

Keywords