Energies (Aug 2019)

Numerical Investigations of a Tip Turbine Aerodynamic Design in a Propulsion System for VTOL Vehicles

  • Xin Xiang,
  • Guoping Huang,
  • Jie Chen,
  • Lei Li,
  • Weiyu Lu

DOI
https://doi.org/10.3390/en12153003
Journal volume & issue
Vol. 12, no. 15
p. 3003

Abstract

Read online

High thrust and low specific fuel consumption (SFC) are important for vertical takeoff and landing (VTOL) vehicles. An effective way to decrease the SFC is to increase the bypass ratio (BPR) of the propulsion system. The air-driven fan (or fan-in-wing) has a very high bypass ratio and has proved to be successful in VTOL aircrafts. However, the tip turbine that extracts energy for the air-driven fan faces the low-solidity problem and performs inadequately. In this study, we developed a high-reaction method for the aerodynamic design of a tip turbine to solve the low-solidity problem. A typical tip turbine was selected and designed by both conventional and high-reaction methods. Three-dimensional flow fields were numerically simulated through a Reynolds-averaged Navier-Stokes (RANS)-based computational fluid dynamics (CFD) method. The energy extraction rate was proposed to evaluate and display the energy extraction capability of the turbine. The results showed that the high-reaction turbine could solve the low-solidity problem and significantly increase the isentropic efficiency from approximately 80.0% to 85.6% and improve the isentropic work by 71.9% compared with the conventional method (from 10.28 kW/kg to 17.67 kW/kg).

Keywords