NeuroImage (Dec 2022)

Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI

  • Usman Mahmood,
  • Zening Fu,
  • Satrajit Ghosh,
  • Vince Calhoun,
  • Sergey Plis

Journal volume & issue
Vol. 264
p. 119737

Abstract

Read online

Brain network interactions are commonly assessed via functional (network) connectivity, captured as an undirected matrix of Pearson correlation coefficients. Functional connectivity can represent static and dynamic relations, but often these are modeled using a fixed choice for the data window Alternatively, deep learning models may flexibly learn various representations from the same data based on the model architecture and the training task. However, the representations produced by deep learning models are often difficult to interpret and require additional posthoc methods, e.g., saliency maps. In this work, we integrate the strengths of deep learning and functional connectivity methods while also mitigating their weaknesses. With interpretability in mind, we present a deep learning architecture that exposes a directed graph layer that represents what the model has learned about relevant brain connectivity. A surprising benefit of this architectural interpretability is significantly improved accuracy in discriminating controls and patients with schizophrenia, autism, and dementia, as well as age and gender prediction from functional MRI data. We also resolve the window size selection problem for dynamic directed connectivity estimation as we estimate windowing functions from the data, capturing what is needed to estimate the graph at each time-point. We demonstrate efficacy of our method in comparison with multiple existing models that focus on classification accuracy, unlike our interpretability-focused architecture. Using the same data but training different models on their own discriminative tasks we are able to estimate task-specific directed connectivity matrices for each subject. Results show that the proposed approach is also more robust to confounding factors compared to standard dynamic functional connectivity models. The dynamic patterns captured by our model are naturally interpretable since they highlight the intervals in the signal that are most important for the prediction. The proposed approach reveals that differences in connectivity among sensorimotor networks relative to default-mode networks are an important indicator of dementia and gender. Dysconnectivity between networks, specially sensorimotor and visual, is linked with schizophrenic patients, however schizophrenic patients show increased intra-network default-mode connectivity compared to healthy controls. Sensorimotor connectivity was important for both dementia and schizophrenia prediction, but schizophrenia is more related to dysconnectivity between networks whereas, dementia bio-markers were mostly intra-network connectivity.

Keywords