Materials & Design (Oct 2019)

Deformation and strength characteristics of Laves phases in titanium alloys

  • C.D. Rabadia,
  • Y.J. Liu,
  • L.Y. Chen,
  • S.F. Jawed,
  • L.Q. Wang,
  • H. Sun,
  • L.C. Zhang

Journal volume & issue
Vol. 179

Abstract

Read online

The superior reinforcement nature of Laves phases make them suitable for high-strength applications. Therefore, investigations on the deformation and strength characteristics of Laves phases are useful in development of an improved Laves phase-reinforced alloy. In this work, the Vickers micro-indentation method is used to evaluate and compare the deformation and strength characteristics of a hexagonal close-packed Laves phase (C14-type) in Ti-35Zr-5Fe-6Mn (wt%) and a face-centered cubic Laves phase (C15-type) in Ti-33Zr-7Fe-4Cr (wt%), considering the same volume fraction of Laves phase (~7.0%) in these alloys. Moreover, the effects of higher volume fraction of Laves phase (19.4%) on indentation-based deformation features are evaluated in Ti-35Zr-5Fe-8Mn (wt%). Remarkably, dislocation activity and plastic deformation features are evident in the C15-type Laves phase, whereas the C14-type Laves phase strongly blocks dislocation motion. Therefore, the C15-type Laves phase improves plastic deformability, whereas the C14-type Laves phase improves strength characteristics of Laves phase-reinforced alloys. Keywords: Titanium alloy, Micro-indentation, Laves phase, Deformation, Slip, Dislocation