An improved Synthetic Aperture Radar (SAR) imaging algorithm is proposed to address the issues of low azimuth resolution and noise interference in the sparse sampling condition. Based on the existing L1/2 regularization theory and iterative threshold algorithm, the gradient operator is modified, which can improve the solution accuracy of the reconstructed image and reduce the load of calculation. Then, under full sampling and under-sampling conditions, the original and improved L1/2 iterative threshold algorithm are combined with the approximate observation model to image SAR echo signals and compare their imaging performance. The experimental findings demonstrate that the improved algorithm improves the azimuth resolution of SAR images and has higher convergence performance.