European Journal of Medical Research (Apr 2024)

Assessment and clinical utility of metagenomic next-generation sequencing for suspected lower respiratory tract infections

  • Huan Chen,
  • Qiong Huang,
  • Weiwei Wu,
  • Zhiguo Wang,
  • Wei Wang,
  • Yigen Liu,
  • Fangfang Ruan,
  • Chengzhen He,
  • Jing Li,
  • Jia Liu,
  • Guocheng Wu

DOI
https://doi.org/10.1186/s40001-024-01806-7
Journal volume & issue
Vol. 29, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Objectives This study aims to compare the diagnostic efficacy of metagenomic next-generation sequencing (mNGS) to traditional diagnostic methods in patients with lower respiratory tract infections (LRTIs), elucidate the etiological spectrum of these infections, and explore the impact of mNGS on guiding antimicrobial therapy. Methods We retrospectively analyzed data from 128 patients admitted to the Respiratory Department of Anqing 116 Hospital between July 2022 and July 2023. All patients had undergone both mNGS and conventional microbiological techniques (CMT) for LRTI diagnosis. We assessed the diagnostic performance of these methods and examined the influence of mNGS on antimicrobial decision-making. Results Overall, mNGS demonstrated superior sensitivity (96.8%) and accuracy (96.8%) compared to CMT. For Mycobacterium tuberculosis detection, the accuracy and sensitivity of mNGS was 88.8% and 77.6%, which was lower than the 94.7% sensitivity of the T-spot test and the 79.6% sensitivity of CMT. In fungal pathogen detection, mNGS showed excellent sensitivity (90.5%), specificity (86.7%), and accuracy (88.0%). Bacteria were the predominant pathogens detected (75.34%), with Mycobacterium tuberculosis (41.74%), Streptococcus pneumoniae (21.74%), and Haemophilus influenzae (16.52%) being most prevalent. Bacterial infections were most common (62.10%), followed by fungal and mixed infections (17.74%). Of the 118 patients whose treatment regimens were adjusted based on mNGS results, 102 (86.5%) improved, 7 (5.9%) did not respond favorably, and follow-up was lost for 9 patients (7.6%). Conclusions mNGS offers rapid and precise pathogen detection for patients with suspected LRTIs and shows considerable promise in diagnosing Mycobacterium tuberculosis and fungal infections. By broadening the pathogen spectrum and identifying polymicrobial infections, mNGS can significantly inform and refine antibiotic therapy.

Keywords