Advanced Nonlinear Studies (Feb 2023)

The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation

  • Deng Yinbin,
  • He Qihan,
  • Pan Yiqing,
  • Zhong Xuexiu

DOI
https://doi.org/10.1515/ans-2022-0049
Journal volume & issue
Vol. 23, no. 1
pp. 6133 – 6162

Abstract

Read online

We consider the existence and nonexistence of the positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation: −Δu=∣u∣2∗−2u+λu+μulogu2x∈Ω,u=0x∈∂Ω,\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}-\Delta u={| u| }^{{2}^{\ast }-2}u+\lambda u+\mu u\log {u}^{2}\hspace{1.0em}& x\in \Omega ,\\ u=0\hspace{1.0em}& x\in \partial \Omega ,\end{array}\right. where Ω⊂RN\Omega \subset {{\mathbb{R}}}^{N} is a bounded open domain, λ,μ∈R\lambda ,\mu \in {\mathbb{R}}, N≥3N\ge 3 and 2∗≔2NN−2{2}^{\ast }:= \frac{2N}{N-2} is the critical Sobolev exponent for the embedding H01(Ω)↪L2∗(Ω){H}_{0}^{1}\left(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{{2}^{\ast }}\left(\Omega ). The uncertainty of the sign of slogs2s\log {s}^{2} in (0,+∞)\left(0,+\infty ) has some interest in itself. We will show the existence of positive ground state solution, which is of mountain pass type provided λ∈R,μ>0\lambda \in {\mathbb{R}},\mu \gt 0 and N≥4N\ge 4. While the case of μ<0\mu \lt 0 is thornier. However, for N=3,4N=3,4, λ∈(−∞,λ1(Ω))\lambda \in \left(-\infty ,{\lambda }_{1}\left(\Omega )), we can also establish the existence of positive solution under some further suitable assumptions. A nonexistence result is also obtained for μ<0\mu \lt 0 and −(N−2)μ2+(N−2)μ2log−(N−2)μ2+λ−λ1(Ω)≥0-\frac{\left(N-2)\mu }{2}+\frac{\left(N-2)\mu }{2}\log \left(-\frac{\left(N-2)\mu }{2}\right)+\lambda -{\lambda }_{1}\left(\Omega )\ge 0 if N≥3N\ge 3. Comparing with the results in the study by Brézis and Nirenberg (Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477), some new interesting phenomenon occurs when the parameter μ\mu on logarithmic perturbation is not zero.

Keywords