International Journal of Computational Intelligence Systems (Mar 2024)
MKTN: Adversarial-Based Multifarious Knowledge Transfer Network from Complementary Teachers
Abstract
Abstract With the demands for light deep networks models in various front-end devices, network compression has attracted increasing interest for reducing model sizes yet without sacrificing much model accuracy. This paper presents a multifarious knowledge transfer network (MKTN) that aims to produce a compact yet powerful student network from two complementary teacher networks. Instead of learning homogeneous features, the idea is to pre-train one teacher to capture generative and low-level image features under a reconstruction objective, and another teacher to capture discriminative and task-specific features under the same objective as the student network. During knowledge transfer, the student learns multifarious and complementary knowledge from the two teacher networks under the guidance of the proposed adversarial loss and feature loss respectively. Experimental results indicate that the proposed training losses can effectively guide the student to learn spatial-level and pixel-level information as distilled from teacher networks. On the other hand, our study over a number of widely used datasets shows that transferring multifarious features from complementary teachers equipped with different types of knowledge helps to teach a compact yet powerful student effectively.
Keywords