Cancer Medicine (Aug 2024)

Enhancing chemotherapeutic efficacy: Niosome‐encapsulated Dox‐Cis with MUC‐1 aptamer

  • Firat Baris Barlas,
  • Bilge Olceroglu,
  • Didem Ag Seleci,
  • Zinar Pinar Gumus,
  • Pinar Siyah,
  • Meriam Dabbek,
  • Georg Garnweitne,
  • Frank Stahl,
  • Thomas Scheper,
  • Suna Timur

DOI
https://doi.org/10.1002/cam4.70079
Journal volume & issue
Vol. 13, no. 15
pp. n/a – n/a

Abstract

Read online

Abstract Background Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. Objective This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox‐Cis), encapsulated within niosomes and modified with MUC‐1 aptamers to enhance biocompatibility and target specific cancer cells. Methods The chemical structure of the Dox‐Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time‐of‐Flight Mass Spectrometry (LC‐Q‐TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC‐1 positive HeLa cells and MUC‐1 negative U87 cells. Results The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox‐Cis/MUC‐1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox‐Cis/MUC‐1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). Conclusion The study underscores the potential of the Dox‐Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.

Keywords