Atmospheric Chemistry and Physics (Nov 2022)
Fluxes, patterns and sources of phosphorus deposition in an urban–rural transition region in Southwest China
Abstract
Understanding the patterns of atmospheric phosphorus (P) deposition is essential for assessing the global P biogeochemical cycle. Atmospheric P is an essential source of P in agricultural activities as well as eutrophication in waters; however, the information on P deposition is paid relatively less attention, especially in the anthropogenic influencing region. Therefore, this study chose a typical urban–rural transition as a representative case to monitor the dry and wet P depositions for 2 years. The results showed that the fluxes of atmospheric total P deposition ranged from 0.50 to 1.06 kg P hm−2 yr−1, and the primary form was atmospheric dry P deposition (76.1 %, 0.76–0.84 kg P hm−2 yr−1). Moreover, it was found that the monthly variations of P deposition were strongly correlated with meteorological factors, including precipitation, temperature and relative humidity. However, the fluxes of dry P deposition and total P deposition were more affected by land use, which increased with the agro-facility, town and paddy field areas but decreased with the forest and country road areas. These findings suggested that dry P deposition was the primary form of total P deposition, and P deposition could be affected both by meteorological factors and land-use types. Thus, proper management of land use may help mitigate the pollution caused by P deposition.